在理解了move_base的基础上,我们开始机器人的定位与导航。gmaping包是用来生成地图的,需要使用实际的机器人获取激光或者深度数据,所以我们先在已有的地图上进行导航与定位的仿真。
amcl是移动机器人二维环境下的概率定位系统。它实现了自适应(或kld采样)的蒙特卡罗定位方法,其中针对已有的地图使用粒子滤波器跟踪一个机器人的姿态。 一、测试 首先运行机器人节点: - [plain] view plaincopy
- roslaunch rbx1_bringup fake_turtlebot.launch
复制代码 然后运行amcl节点,使用测试地图: - [plain] view plaincopy
- roslaunch rbx1_nav fake_amcl.launch map:=test_map.yaml
复制代码 可以看一下fake_amcl.launch这个文件的内容: - [plain] view plaincopy
- <launch>
- <!-- Set the name of the map yaml file: can be overridden on the command line. -->
- <arg name="map" default="test_map.yaml" />
- <!-- Run the map server with the desired map -->
- <node name="map_server" pkg="map_server" type="map_server" args="$(find rbx1_nav)/maps/$(arg map)"/>
- <!-- The move_base node -->
- <include file="$(find rbx1_nav)/launch/fake_move_base.launch" />
-
- <!-- Run fake localization compatible with AMCL output -->
- <node pkg="fake_localization" type="fake_localization" name="fake_localization" output="screen" />
- <!-- For fake localization we need static transforms between /odom and /map and /map and /world -->
- <node pkg="tf" type="static_transform_publisher" name="odom_map_broadcaster"
- args="0 0 0 0 0 0 /odom /map 100" />
- </launch>
复制代码 这个lanuch文件作用是加载地图,并且调用fake_move_base.launch文件打开move_base节点并加载配置文件,最后运行amcl。
然后运行rviz: - [plain] view plaincopy
- rosrun rviz rviz -d `rospack find rbx1_nav`/nav_fuerte.vcg
复制代码这时在rvoiz中就应该显示出了地图和机器人:
现在就可以通过rviz在地图上选择目标位置了,然后就会看到机器人自动规划出一条全局路径,并且导航前进:
二、自主导航 在实际应用中,我们往往希望机器人能够自主进行定位和导航,不需要认为的干预,这样才更智能化。在这一节的测试中,我们让目标点在地图中随机生成,然后机器人自动导航到达目标。
这里运行的主要文件是:fake_nav_test.launch,让我们来看一下这个文件的内容: - [plain] view plaincopy
- <launch>
-
- <param name="use_sim_time" value="false" />
-
- <!-- Start the ArbotiX controller -->
- <include file="$(find rbx1_bringup)/launch/fake_turtlebot.launch" />
-
- <!-- Run the map server with the desired map -->
- <node name="map_server" pkg="map_server" type="map_server" args="$(find rbx1_nav)/maps/test_map.yaml"/>
-
- <!-- The move_base node -->
- <node pkg="move_base" type="move_base" respawn="false" name="move_base" output="screen">
- <rosparam file="$(find rbx1_nav)/config/fake/costmap_common_params.yaml" command="load" ns="global_costmap" />
- <rosparam file="$(find rbx1_nav)/config/fake/costmap_common_params.yaml" command="load" ns="local_costmap" />
- <rosparam file="$(find rbx1_nav)/config/fake/local_costmap_params.yaml" command="load" />
- <rosparam file="$(find rbx1_nav)/config/fake/global_costmap_params.yaml" command="load" />
- <rosparam file="$(find rbx1_nav)/config/fake/base_local_planner_params.yaml" command="load" />
- <rosparam file="$(find rbx1_nav)/config/nav_test_params.yaml" command="load" />
- </node>
-
- <!-- Run fake localization compatible with AMCL output -->
- <node pkg="fake_localization" type="fake_localization" name="fake_localization" output="screen" />
-
- <!-- For fake localization we need static transform between /odom and /map -->
- <node pkg="tf" type="static_transform_publisher" name="map_odom_broadcaster" args="0 0 0 0 0 0 /map /odom 100" />
-
- <!-- Start the navigation test -->
- <node pkg="rbx1_nav" type="nav_test.py" name="nav_test" output="screen">
- <param name="rest_time" value="1" />
- <param name="fake_test" value="true" />
- </node>
-
- </launch>
复制代码
这个lanuch的功能比较多:
(1) 加载机器人驱动
(2) 加载地图
(3) 启动move_base节点,并且加载配置文件
(4) 运行amcl节点
(5) 然后加载nav_test.py执行文件,进行随机导航
相当于是把我们之前实验中的多个lanuch文件合成了一个文件。
现在开始进行测试,先运行ROS:
- [plain] view plaincopy
- roscore
复制代码
然后我们运行一个监控的窗口,可以实时看到机器人发送的数据: - [plain] view plaincopy
- rxconsole
复制代码 接着运行lanuch文件,并且在一个新的终端中打开rviz: - [plain] view plaincopy
- roslaunch rbx1_nav fake_nav_test.launch
- (打开新终端)
- rosrun rviz rviz -d `rospack find rbx1_nav`/nav_test_fuerte.vcg
复制代码
好了,此时就看到了机器人已经放在地图当中了。然后我们点击rviz上的“2D Pose Estimate”按键,然后左键在机器人上单击,让绿色的箭头和黄色的箭头重合,机器人就开始随机选择目标导航了:
在监控窗口中,我们可以看到机器人发送的状态信息:
三、导航代码分析- [plain] view plaincopy
- #!/usr/bin/env python
-
- import roslib; roslib.load_manifest('rbx1_nav')
- import rospy
- import actionlib
- from actionlib_msgs.msg import *
- from geometry_msgs.msg import Pose, PoseWithCovarianceStamped, Point, Quaternion, Twist
- from move_base_msgs.msg import MoveBaseAction, MoveBaseGoal
- from random import sample
- from math import pow, sqrt
-
- class NavTest():
- def __init__(self):
- rospy.init_node('nav_test', anonymous=True)
-
- rospy.on_shutdown(self.shutdown)
-
- # How long in seconds should the robot pause at each location?
- # 在每个目标位置暂停的时间
- self.rest_time = rospy.get_param("~rest_time", 10)
-
- # Are we running in the fake simulator?
- # 是否仿真?
- self.fake_test = rospy.get_param("~fake_test", False)
-
- # Goal state return values
- # 到达目标的状态
- goal_states = ['PENDING', 'ACTIVE', 'PREEMPTED',
- 'SUCCEEDED', 'ABORTED', 'REJECTED',
- 'PREEMPTING', 'RECALLING', 'RECALLED',
- 'LOST']
-
- # Set up the goal locations. Poses are defined in the map frame.
- # An easy way to find the pose coordinates is to point-and-click
- # Nav Goals in RViz when running in the simulator.
- # Pose coordinates are then displayed in the terminal
- # that was used to launch RViz.
- # 设置目标点的位置
- # 如果想要获得某一点的坐标,在rviz中点击 2D Nav Goal 按键,然后单机地图中一点
- # 在终端中就会看到坐标信息
- locations = dict()
-
- locations['hall_foyer'] = Pose(Point(0.643, 4.720, 0.000), Quaternion(0.000, 0.000, 0.223, 0.975))
- locations['hall_kitchen'] = Pose(Point(-1.994, 4.382, 0.000), Quaternion(0.000, 0.000, -0.670, 0.743))
- locations['hall_bedroom'] = Pose(Point(-3.719, 4.401, 0.000), Quaternion(0.000, 0.000, 0.733, 0.680))
- locations['living_room_1'] = Pose(Point(0.720, 2.229, 0.000), Quaternion(0.000, 0.000, 0.786, 0.618))
- locations['living_room_2'] = Pose(Point(1.471, 1.007, 0.000), Quaternion(0.000, 0.000, 0.480, 0.877))
- locations['dining_room_1'] = Pose(Point(-0.861, -0.019, 0.000), Quaternion(0.000, 0.000, 0.892, -0.451))
-
- # Publisher to manually control the robot (e.g. to stop it)
- # 发布控制机器人的消息
- self.cmd_vel_pub = rospy.Publisher('cmd_vel', Twist)
-
- # Subscribe to the move_base action server
- # 订阅move_base服务器的消息
- self.move_base = actionlib.SimpleActionClient("move_base", MoveBaseAction)
-
- rospy.loginfo("Waiting for move_base action server...")
-
- # Wait 60 seconds for the action server to become available
- # 60s等待时间限制
- self.move_base.wait_for_server(rospy.Duration(60))
-
- rospy.loginfo("Connected to move base server")
-
- # A variable to hold the initial pose of the robot to be set by
- # the user in RViz
- # 保存机器人的在rviz中的初始位置
- initial_pose = PoseWithCovarianceStamped()
-
- # Variables to keep track of success rate, running time,
- # and distance traveled
- # 保存成功率、运行时间、和距离的变量
- n_locations = len(locations)
- n_goals = 0
- n_successes = 0
- i = n_locations
- distance_traveled = 0
- start_time = rospy.Time.now()
- running_time = 0
- location = ""
- last_location = ""
-
- # Get the initial pose from the user
- # 获取初始位置(仿真中可以不需要)
- rospy.loginfo("*** Click the 2D Pose Estimate button in RViz to set the robot's initial pose...")
- rospy.wait_for_message('initialpose', PoseWithCovarianceStamped)
- self.last_location = Pose()
- rospy.Subscriber('initialpose', PoseWithCovarianceStamped, self.update_initial_pose)
-
- # Make sure we have the initial pose
- # 确保有初始位置
- while initial_pose.header.stamp == "":
- rospy.sleep(1)
-
- rospy.loginfo("Starting navigation test")
-
- # Begin the main loop and run through a sequence of locations
- # 开始主循环,随机导航
- while not rospy.is_shutdown():
- # If we've gone through the current sequence,
- # start with a new random sequence
- # 如果已经走完了所有点,再重新开始排序
- if i == n_locations:
- i = 0
- sequence = sample(locations, n_locations)
- # Skip over first location if it is the same as
- # the last location
- # 如果最后一个点和第一个点相同,则跳过
- if sequence[0] == last_location:
- i = 1
-
- # Get the next location in the current sequence
- # 在当前的排序中获取下一个目标点
- location = sequence[i]
-
- # Keep track of the distance traveled.
- # Use updated initial pose if available.
- # 跟踪形式距离
- # 使用更新的初始位置
- if initial_pose.header.stamp == "":
- distance = sqrt(pow(locations[location].position.x -
- locations[last_location].position.x, 2) +
- pow(locations[location].position.y -
- locations[last_location].position.y, 2))
- else:
- rospy.loginfo("Updating current pose.")
- distance = sqrt(pow(locations[location].position.x -
- initial_pose.pose.pose.position.x, 2) +
- pow(locations[location].position.y -
- initial_pose.pose.pose.position.y, 2))
- initial_pose.header.stamp = ""
-
- # Store the last location for distance calculations
- # 存储上一次的位置,计算距离
- last_location = location
-
- # Increment the counters
- # 计数器加1
- i += 1
- n_goals += 1
-
- # Set up the next goal location
- # 设定下一个目标点
- self.goal = MoveBaseGoal()
- self.goal.target_pose.pose = locations[location]
- self.goal.target_pose.header.frame_id = 'map'
- self.goal.target_pose.header.stamp = rospy.Time.now()
-
- # Let the user know where the robot is going next
- # 让用户知道下一个位置
- rospy.loginfo("Going to: " + str(location))
-
- # Start the robot toward the next location
- # 向下一个位置进发
- self.move_base.send_goal(self.goal)
-
- # Allow 5 minutes to get there
- # 五分钟时间限制
- finished_within_time = self.move_base.wait_for_result(rospy.Duration(300))
-
- # Check for success or failure
- # 查看是否成功到达
- if not finished_within_time:
- self.move_base.cancel_goal()
- rospy.loginfo("Timed out achieving goal")
- else:
- state = self.move_base.get_state()
- if state == GoalStatus.SUCCEEDED:
- rospy.loginfo("Goal succeeded!")
- n_successes += 1
- distance_traveled += distance
- rospy.loginfo("State:" + str(state))
- else:
- rospy.loginfo("Goal failed with error code: " + str(goal_states[state]))
-
- # How long have we been running?
- # 运行所用时间
- running_time = rospy.Time.now() - start_time
- running_time = running_time.secs / 60.0
-
- # Print a summary success/failure, distance traveled and time elapsed
- # 输出本次导航的所有信息
- rospy.loginfo("Success so far: " + str(n_successes) + "/" +
- str(n_goals) + " = " +
- str(100 * n_successes/n_goals) + "%")
- rospy.loginfo("Running time: " + str(trunc(running_time, 1)) +
- " min Distance: " + str(trunc(distance_traveled, 1)) + " m")
- rospy.sleep(self.rest_time)
-
- def update_initial_pose(self, initial_pose):
- self.initial_pose = initial_pose
-
- def shutdown(self):
- rospy.loginfo("Stopping the robot...")
- self.move_base.cancel_goal()
- rospy.sleep(2)
- self.cmd_vel_pub.publish(Twist())
- rospy.sleep(1)
-
- def trunc(f, n):
- # Truncates/pads a float f to n decimal places without rounding
- slen = len('%.*f' % (n, f))
- return float(str(f)[:slen])
-
- if __name__ == '__main__':
- try:
- NavTest()
- rospy.spin()
- except rospy.ROSInterruptException:
- rospy.loginfo("AMCL navigation test finished.")
复制代码
|